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( Zonal Harmonic Perturbations of an Accurate Reference Orbit of a.n/
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The theory developed in an earlier psper, for an accurate

Abstract

reference orbit of an artificial satellite, is first slightly mod-
ified, so as to prepare the way for a freatment of zonal harmonic
perturbations. Delaunay variables are next introduced, by means

of certain linear combinations of the action variables, along with
their cenonical conjugates. Application of the von Zeipel method
then permits the calculation of the most _impor‘t:ant zonal harmonic
perturbations. These arlse from the third, with coefficient J, ,
and the residual fourth, with coefficient J, + J5 . The accuracy
of the secular and short-periodic effects_is through terms of order
J2 and that of the long-periodic effects is through terms of order

2

J'2. Since the reference orbit itself, with exact secular terms,

takes care of all but 0.5 percent of the deviation of the earth's

gravitational field from spherical symmetry, the over-all secular
Svrpasses f}}afo/ olhas rheors R,

accuracy &5 ECiD-guesbom—bhen second crderﬁ The results are com-
A

pared with those of Kozai.

* Research supported by the National Aeronautics and Space Agency,
U.S.Al
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1. The Reference Orbit

The author (Vinti 1959a,b) has introduced a potential

V' = -pp(p® + B )7t (1.00)

that can represent accurately the gravitational field of an
oblate planet. Here W 1s the product of the gravitational
constant G and the planet's mass, ¢ is an adjustable length, and
p and 7 are oblate spheroldal coordinates, defined by the equa-

tions

X+ 1Y

rcosgexpi¢ = [(p2+ -c2)(l -172) ]% expld §1.01)

N
]

rsing = (1.02)

If an artificiel satellite is at the fleld point, r, 9, and ¢

are respectively its plenetocentric distance sdeclination;and righti
ascension, end X, Y, and Z are its rectangular cocordinates, 0Z
being along the plenet's axis and OX pointing toward its vernal

equinox.

If r, is the equstorial radius, the true potential is

V= -ur'l[l -5 (x e/::»)n J_ P (sinf)] + tesseral harmonics,  (1.03)
n=2 n o
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where only the products rz Jn need to be known. That is,
differences in the definition of re , When non-circularity of
the equator is taken into account, can be reconciled by small

adjustments of the J's. Then if
3 ,
¢ = rg‘ Ja/’, (1.0k4)

V' represents exactly the zeroth harmonic -i/r and the second
harmonic and also gives higher even harmonics, characterized by

= (-1)™1 & (1.05)

J2m 2

In particular it gives Jll- + Jg = 0, as compared with observed

6 to (o.h)lo'6

values for the earth ranging from -(0.9)10
(Kaula 1962, King-Hele, Cook, and Rees 1963). Consequently it
accounts for about 99'.5% | of the deviation of V from the value
-u/r comsponding to spherical symetry. It thus asccounts almos?
completely for the flattening of the eaxrth, leading to a geoid
that never departs by more tha.n/ ggo;febters fron the true sea-level
suxrface.

For the drag-free motion of an artificial satellite the
potential (1.00) leads to a separable problem, which has been
worked out emalytically (Vinti 1961 a,b, 1962). This solution,

holding for all angles of inclination and containing no critical
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inclination or long-periodic terms, gives secular terms exactly

by means of rapidly converging infinite series and short-periodic
terms correctly through order Jg . We call this orbit correspond-
ing to (1.00) the reference orbit. For such a reference orbit
error can never accumulate, because of the exactness of the secula:
terms, and the periodic terms can be in error only by amownts of

the order Jg 5 i.e., by about 1 part in 109, since J'2 = (l.08)10-3
for the earth.

2., Zonal Harmonic Perturbatbtions

For a satellite of the earth, if its orbit is high enough
so that drag is small and low enough so that the moon's effect 1s
small, the above reference orbit ought to hold rather well for a
good many revolutions. (I purposely choose vague words here, since
numericel comparisons are still incomplete.) Eventually, however,
the actual orbit will deviate more and more from such a reference
orbit, because of the neglected forces. These include forces aris-
ing from drag, meteoritic impact, radistion, electromagnetic fields,
the sun end the moon, and the neglected part of the earth's grav-
Itational potential, corresponding to (1.93) minus (1.00). Since
the expension of (1.00) in zonal hermonics is

i

Vo= et i(re/r)am (-Je)m B, (s1n9), (2.00)
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this difference is
-1 ,%e\3 r r
V-v =g 1[(;?.) T; Py(sing)+ (_.3)4(%4, Jg) Ph(sine)+(-£‘9)5 I;Pg(51n0)
r
* (—;.9)6 (Jg- 32) Be(sing) + ...] + tesseral harmonics  (2.71)

of 'bhese- forces the most important, for any sstellite with a large
ratio of mass to area, are the;; forces co:fresponding to J3 and
gy, + Jg in (2.01) and dreg, which as determined empirically may
include effects of meteoritic impact. For a double satellite (Lenger
end Vinti 1963) only (2.01) and the lunar-solar perturbation remain.
The purpose of +the presenf peper is ‘Eo devise a method for
correcting for the effects of any of the zonal harmonics in (2.01).
The first example considered is the residuel fourth harmonic s ‘vﬁ.‘bh
coefficient J; + J5 . This harmonic leads not only to short-periodic
effects and secular effects, but also to long-periodic effects depend-
ing on a resonance dencminator 1-5 cos‘2I, giving rise to a critical
inclination I= 63.1+°. The second example considered is the third
harmonic, with coefficient J3. This gives rise only to short-periodic
effects and to long~periodic effects without singularities, so that
it is qualitabively less interesting. Because of iks greater ma.g—

nitude, however, J3 being about (--2.1+)10_6 and |J) + Jg’ being
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probably somewhat less than (0.5)10'6 (Kaula 1962, King-Hele, Cook,

and Rees 1963), it leads to scmewhat larger periodic effects.

3. The Dynamicsdl Problem

Our problem is thus to find the motion of a satellite, taken

to be of unit mass » when the Hemiltonian is
F=-T+p(p* ) +F, (3.01)

where T 1s its kinetic energy and where, for the residual fourth

harmonic

L = - ri: - %Ph(sine) (3.02)

b=
I

3, + 5 _ (3.03)

%

‘ ( We have here reversed the sign of the Hamiltonian, to agree
with the usual practice with Delaunsy variables.) In carrying
out this solution we shall use the results and notation of the
solution (Vinti 1961 a,b, 1962) for the reference orbit, for

which F' = 0. If in (3.02) we then put

r = a(l - ecos E) = a(l - ®)(1 + ecos v)7* (3.04)

n

sing sinT sin(v + 32) s (3.05)
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the expression (3.02) for Fy will be correct through order Jg .

To this order of accuracy she-orhital olemenso—i

A T

(305} vizayese; Ty—and-f,-uay-correspond-elther—to-the—ref~
el = 1 it-ard the anomalies E and v

may be given by the quasi-elliptic expressions

ExM +E  (3.06) vaM + v (3.07)

Note that (3.04) corresponds to r=~p and (3.05) to other

approximations of zeroth ordezf in J,, viz.,
b g Flg M+ Byt vy v B, (3.08) p~sing  (3.09)

Such an order of accuracy will result in errors of ordexr Jg for
those seécular and short-periodic effects which are produced by the
perturbing potential (3.02) and of order J‘g for the correspond-

ing long-periodic effects. This perturbation (3.02) represents about
0.1 % of the deparb‘uré of the earth from sphericity. The solution
for the other harmonics in(2.Ql) will ha.ve the seme accuracy. How-
ever, since a:ll-of these highér harmonics represent only about 0.5%
of the earth's departure from sphericity,- their lower accuracy, &s
compared with that of the reference orbit which has already accounted
for 99.5 % of this departure, should not result in serious cumila-

tive errors.
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In doing the perturbation theory, the first canoniecal
varisbles that come to mind are the Jacobi "constants", viz.,
the o's and . B8's of the reference orbit. When the reference
orbit is elliptic, however, their shortcomings are well known
and they lead to the same troubles in the present problem,
giving rise to Poisson terms, linear in the time, in the changes
in oy and o .

The next set of canonical variables that one might try is
the set generated from the ¢'s and B's by the generating func-

tion

R D S

O

If we define n_. by ' ¢

p=nd el oy ==t u/ey s (3.11)

the resulting canonical variables are

L= (pgo)—z- 4= no('b + Bl)
o, | )32 | (3.12)
a3 33 s

canonical with respect to the Hamiltonia

2 .
F=3%p/f e E - (3.13)
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When the reference orbit is el‘l.iptic, this set 1s the same as
the fast Delsunay set (Garfinkel 1960).

Oﬁe mey then attempt to apply the von Zelpel method in the

d”‘/ ;’u'( Ja’/,'a-ccl 959),

way successfully used by Brouwer (1959) A first eliminating short-
periodic terms and then proceeding to eliminate long-periodic
terms. One finds, however, that the corresponding generating
function Si » Which ought to be of the first order in the param-

eter ¢ = J'h + J‘Z » must then satisfy

3 87/381 = zexoth order in g (3.1%)

One may alternatively eliminate short-periodic and long-
periodic terms simultaneously, but one then obtains a Poisson
term of vthe form v'sin 2‘8é in 0 - O‘é' Since v' has a secular
part, such & result would appear absurd, since the "constent"” & »
which ought to have only a small periodic variation, would then
increase indefinitely with time.

These difficulties are examples of the fallure of the von
Zeipel method whenever the following conditions both hold: (1)
the perturbing potential ha§ a long-periodic part of the first
order in the perturbation parameter, and (2) the canonical vari-~

ables are such that the unperturbed Hamiltonian depends only on L.
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To obtain a successful set of variables, we may proceed as
follows. let qg and pg, i=1,2,3, be the coordinates and momenta

0 MP s p , pn, 3 corresponding to the umperturbed problem (the

reference orbi'b), with Hamiltonian F =Ty«

i=1,2,3, be the corresponding action and angle varisbles.

Also-let 37 , w; ,

Then "JJ; '}J: , )_';
p; = a5(a3s a5 q3,_gz'l,g(2,_¢§)/aqi (3.15)
J, ,), P
vy = 35(qq, 9 qg, &0 3 yg)/aai ;o (1=1,2,3)  (3.16)

where S is the Hamilton—Jacob:. function of the unperturbed problem

(Vinti l959b), with the Jacobl o's replaced by the 3° ]+ Here

a;a § 27 day = 35leys o 3) (3.17)

Now let Qs Pys i=1,2,3, be the coordirnates and momenta corresponding

to the perturbed problem, with Hemiltonien F = F, + F Introduce

0¥ ¥y -
new varisbles J;, W, 1 =1,2,3, by méans of the canonical trans-
formation

J) Ja J3
= 35(qg5 aps 4g3s s B 23)/3a; (3.18)

vy = 38(ays g5 agr s s 35)/03; 5 (1°1,2,3) (3.19)
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where S is the same function of the 9 and J 1 that the gbove

Hemilton-Jacobi functicn is of the q; and J; . Then the W, and

J ; ave canonical variables, satisfying the ‘equa'bions .
ad,/at = 3F/aw, #0 " (3.20)
dwi/d.t =-3F/3] ; # constant (3.21)

They are thus not action znd éngle variebles, since the 'ji are not

constant end the W

; are not linear functions of t. Moreover

-

Jg #¢Ppydayy s, _ (3.22)

in contradistinction with (3.17).

It pays to go fuxther, however, axd introduce still anothexr

set of variables, a new Delaunay set L, G, H, g, g, h, by the

transformations

2r L= Jp * Jp + I3 senag : 4 =27 Wy

2m G = §, + I3 senoy (3.23) g = am(v, = W) (3.24)
2n H = '33 ' h = 27r(w3- Vi, sgno%) s

where sgno:3 = & 1 respectively for a direct orbit or a retrograde

orbit. To verify that they are canonical, note that
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1ds + Gdg + Hdh = J; dwy + J, aw, + 33 dw3 (3.25)

vsad

They were inbmedueed by Izsak (1962) in his application of the author's
theory to the problem of the critical inclination. From (3.23) we

now have

Jl = 2‘"(1"' G) 32 = 27T(G' = ESgna3) 33 = 278 (3026)

i, The New Delsunay Set

The functionel relations among any of the quentities ozi, Ji,

LA for the perturbed problem are the same as those connecting 0‘?. 9

,jg, wgi for the unperturbed problem. We may therefore ususlly drop

superscript zeros and depend on the context for the meanings of the
quantities.

From the author's paper (Vinti 1959 b) we now f£ind

Po .

=2 -g-f; do = 2a[p(-20,) 72~ 0,7 + 0(J,) (%.00)
PL |
"o

Jp = ’*“J‘ -g% dn = 211(a2 - sgna3) + O(J2) ' (%.01)
0

Jg =21 ay . (%.02)

n
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Next put

o =20 fad,  (5.03)  wy =2eyfady  (B.OM) 3 =33 aa,  (.05)

1]

Then, since

28 Fi o 28 -
3d; B | o0y (k = 1,2,3) (%.06)

i
-

we find
A _ _
S0 =T+ By = Iy Wyt iy Yy (4.07,
\S .
3522- Th T dpp Wyt W) (4.08)
.a%_ = = ‘! + °
aa3 B3 313 Wl 323 W2 + 2 W3 ()4‘ 09)
With the aid of (3.24) these equations become
2r(t +By) = Jpq4+ (2 + g) (k.10)
om B, = dppt * Ipp(t * €) (4.13)
2m By = Jygb * (Ipgt 27 sgm o) (4 + @)+ 2mh (4.12)
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The quantities Jrs occurring here are given explicitly as func-
tions of the ¢'s in Egqs. (7.16) through (7.21) of an earlier
paper (Vinti 1961 &)

The constant orbital elements in the perturbed problem are
then thé constant parts a", e", 778 of a,e,n, , along with the
initial values A, ‘

0
corresponding Hamiltonien F dis given by

R gs, hg of the secular parts of 4, g, h. The

F = FO(L,G,H) +Fy (%.13) Fo=-0, (4.14)
so that

L = 3F/as b= -3F/3L

¢ = 3F/ae (%.15) & = ~3F/36 (4.16)

= 3F/3h = 0 g B = -3F/3E

With the use of (3.23), (3.26), and (%.04), we f£ind for the

unperturbed problen that

i-.20 a3 ¥ o
L dl 4, 3d; b 1

g = - S—é— = -5—-— = izl -&3-; -é-é—- = 217(1/2 - Vl) ()'!'017)
S 30y 333

|
|
!

TR COW T w, Ayt vy e )
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and thus for the unpeérturbed problem that

4= Lo * 27 Vl'b
g = go + 217(7)2_ vl)t 1 o (l’"ls)
h'=

by + 2n(vs- v, sen aé)t P
where we have dropped the double primes from zo ) 8gs ho .

Before finding the effects of the perturbing potential, it
is desirable to change the algorithm for the unperturbed problem,
given in an earlier paper (Vinti 1961 a, pp 197-200), so that the
consta.n:'i: orbitel elements become a,e,I, £y, s and ,33 . (/33 is
better than hy, &s we shall see later.) To do so, insert (%.10),
(4.11), and (%.18) into Egs. (8.2) and (8.3) of that paper and

carry out the same process 'l:ha;:t wag carried out there. One finds

M, = J?'0 teryt . (k.19)
by = £o t 8y T 2T Ut : (4.20)

With these new definitions of ?Ms and 3, the algorithm then becomes
the same as in the earlier paper. Note, however, that the restric-

tion on the angle of inclination I has been removed (Vinti 1962).
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5. Variations in the Spheroidal Coordinates

Tt is convenient to derive here the variations in P M
and ¢ that will arise from the varlations produced by the
perturbing potentisl in the Delaunay variables. From the later
solution of the canonical equétions (¥.15) end (4.16) we shall
find that the wth Zonal harmonic produces variations in the

Delauney variables of the foms

1 ~

5L=0 L | 5£:£=0'mzm+0'mJ'2 1
5G=0 G +0 I TG (5.00) 5g=0 g +0 I E (5.01)
m m m e m * n &m m ‘2 &n :
5H=6 sh=0 +o 1%
F . ) mhm m 2 m

Here O, = J, and o'lp=Jh+ Jg. 'I‘hetez_'msO'mLmandO'me are

3 3 :
short-periodic of order J‘g ; the products of 0 J’;l with a'm,
zm, gm,’jand hm are long-perioflic of ordexr J'2. For m = 3 the
products of 0'3 with 1,3, g3, and h3 are short-periodic of order J‘g .
Form = 4
by =y Y e
g, = &3 * 8, (5.02)

by =Dy, oy,
%‘Jl %{,3 "

where the products of 0')4_ with L1 %o , end Y’b,g are short-periodic
. o :

terms of oxder Jg and where #he preducts of 0y, with '611-2" g5, and
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h1L2 are secular terms of order Jg -

From §L and O0G we can find the variations of the j's, then of
the &'s, and finally of the elements a,e, end 7, = sinT. From
these and from 8L, &g, and h we can then find O, &v, 0, and
6‘ ¥ and finally the coordinate variations &p, &m, and &4 . To

cbtain the 63's, use (3.26) and (5.00). The results are

63, = en(o,L - 0. C - cm'G" - /3,)
83, = 2m(o,C + cmé'm/.ra) (5.03)
6:]3 = 0

To £ind the f&'s use
== & (5.04)

Within the accuracy of the calcuiation, the coefficients

Waji are needed only through order JZ . Thus by (5.03), (5.04),
and (L4.0k4)

soy = empyo L + 2n(uy vy )G, + 27T(V2-ul)am§'m/32 (5.05)
Then, by (5.03), (5.04), and (%.03)
6c, = 27O L + 2m(a,-0,,7 )0, Gy + 27y - czgl)crm'é'm/J2 (5.06)
Mso, by (4.02) and (5.03)

Say = 0 (5.07)
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To find
o fin azl and oz22 note that

3 3% 3y 3 N
qo1 dd; 3% 3%
(5.08)
3 3 ody 3y
3 === 0
i=1 a’ji aoﬁ_ Oal
so that
%oy Jpp ¥ %pp dpp =1
(5.09)
%y 17+ %p 330 =0,
with the solution
0(21=— jzl/A 0[22= jll/A’ (5’10}
where

From an earlier paper (Vinti 1961 a, p 189), it then follows

that

)™t + 0(3,) (5.12)

Gy = 0(3,) Op = (27
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and also that

2my =1+ 0(J,) (5.13)
U2-vl = O(JQ) 2
where
1
n=pe a'3/2 (5.14)

On carrying secular and short-periocdic variations only through
oxder Jg and long-periodic perturbations only through order J o
it then follows from (5.04) through (5.08) and (5.12) through

(5.14) that

o =10 L (5.15)
60, = GG+ ormEm/J2 (5.16)

boy = O (5.17)

In finding the veriations of other quentities we may drop
all terms in thelr defining equations of oxrder Jlat, where k > 1.

0 _ -1 o
To show this, note that if P = 0(J2) and & = O Py+0 I~ Py

~

where P, and Pl

Q,
1 are both of order J2 s Then

«s(ag?) = J:é‘(om‘Pl + o-mJ;l E)) (5.18)
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Tous if k31, J5 0P, is & seculsr plus short-periodic tern

2
- o~ .
3 and JI; o J,\:L Pl is a long-periodie
= pets &

[

of oréder k+ 2

e

v

of order k + 1 2 2. This proves the statement.

To obtain the varistions of a,e, and Mo We way thus use

2
. 2w o |
am-gs  l-dn-—pR 1-1p~ = , (5.9
% h e

the neglected terms being of order J,. There follow

20
ede = f-éé baty + -—%—a-?- 5a2 (5.20)
> P

2

o = %3‘ ba,

With use of (5.15), (5.16), (5.19), (5.20) and the relation

ag = up + O(Ja), we then find
2omLm
B = (5.21)
be= B2 oL - (ae)l@®3(cc +0 I1E) (5.22)
= e TR “ ¥ a'm o m 2 Tw )

L -~
bng= 1 5(up) (1 - ) (o6 + o It T ) (5.23)
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The element a thus has only & short-periodic veriation while the

~ 2 - & T % -~ el ~ v e o
elements e and 7. = sinl heave both short-periodic and long-

‘0
periocdic but no secular varistions.
To find 6E, v, and & we first insert (4.10) and (4.11)
into Egs. (8.2) and (8.3) of the earlier peper (Vinti 1961 a),

rejecting all terms of order .Tk where k 2 1. We find

2)
E - esinE = £ + O(Jé) (5.24)
Y = v+ g+0(7) (5.25)
Eq. (5.24) gives
& = (1 - ecosE)-l(Gz + sinE 6e) (5.26)

To find §&v , we use the anomaly connection

Yo (e E
tang = (FC )% tangz , (5.27)
from which there follows
_ e \3 2e ., 2Y sin v
ov = (%) (1 - 5z sin 2)5E+--—l 5 Oe
~e
L -3 -
= (l-eg)z(l-ecosE) - [6E + (1—e2) 1 sinm e]

(5.28)
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Then

& = ov + 0g (5.29)

The variations of the spherdldal coordinates

p = a(l-ecosE) (5.30)
7 = 7y siny (5.31)
are then
8p = (l-ecosE)ba - acosE Ge + aesinE 6E (5.32)
&n = sind &, + MycosP ) (5.33)

To find the varlation &9 of the right ascension, we note

that by Eq. (8.49) of the earlier paper (Vinti 1961 a),

¢ = 53 + ngnOl3 + O(J2) 2 (5’3)4‘)
where
i
tenx = (1 -75)Zsany (5.35)
cosy = (l-ngsinng)-%cosz,b (5.36)

Eg. (5.36) was given in Vinti (1961 b). Also by (4.12) and the

results

313 = O(Je) 313+ 2"75gn053 = O(‘I2> (5'37)
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from page 189 of Vinti(1961 a), we find

By =1+ 0(3,), (5.38)
so that

6,83 = &h (5.39)
From (5.35) and (5.36) we f£ind

6 = (1 - 12 atx®P) (2 - )% 6 - 32 -T) B stm2b Gn)  (5.%0)

Then, from (5.3%), (5.39), (5.40), and (5.23), it follows that
5= & 2 . 2,\-1 PRIy y -1 %
$= 00 +(1-1 sin™P)™ cosI[& - 3(ip)° sin2d(o,C) + 0 0" ¢ )], (5.41)

where we have used (1 - n§)§ sgady = cosT .

It is well to note here that 53 is just as useful en orbital

element as ho .
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6. Solution for the Perturbed Delaunay Variables

We now have to solve the canonical equations (4.13) through
(4.16), the perturbing potential being

o

r, = —ure® ¥ 0, (s120) (6.00)

in the case of the residusl fourth harmonic. To obtain secular
end short-pericdic variations through order J‘Z and long-periodic
variations through order .3'2, 1t will suffice to use elliptic

approximations in (6.00), since ) = 4+J§ = O(Jg). Thus in (6.00)

we may put
sing = 1 = nysind = nosin(vi-g) (6.01)
r = p = &(l-ecosE) = a(l-e‘?')(l-l-ecosv)'l ‘ (6.02)
end we may use £ =E - esink (6.03)
1
aL = (z/2)2(1-e%)"2ayr (6.04)
zp = g - (6-05)

Then

L
-pr 0y,
Fy= 8e (31572 22 14 (@) %5 (3L (@) coszprd 7(E) coskity
a

(6.06)
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The part of F, independent of L is then

1
-
Fo, = (2m) dr F dt
0
1; ey 2% 57 2. 105 4,843 T 3
= - —=(1-e7)" : [ r(sasnie 32 a0 (@553 L 7)) coszy
léra 0
no(—)3cos2;b]dv (6.07)
From (6.02) and (6.05) it follows that
2413 2,-3 3 2
[ (&) %ar = 2(2-6%)73+ § &) (6.08)
J' (2)3c05221)dv = —- 2(1 -e ) cos2g (6.09)
(6.10)

27
J" (%)3cosl+¢)dv =0
0

Egs. (6.0T) through (6.10) then result in

= 6.11
Fip = Fre ¥ Frp 0 (6.11)
where the constent part is
)
o -T/2 3 2 2 105 &b
F = - iz:é—-)i (l_eg) 7/ (l+ 'é € )(3"15% + -’82 770) (6.12)

lc 83.5
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end the long-periodic part is
N
.x.;,ureO'h_

e el -7/2 22
Fip™ oo (2- (3~ % I 772 )cos2g (6.13)

The short-periodic part is then given by
(6.14)

so that

F14 ”:: l‘{ 31512 + 22 @5 - (1-62)T2 (14 3 )

+ 5n§(3— 5 ‘no)[(--)5 cosey - £ e*(1-¢%)" 2y1/2 cos2a ]+ 2 h(a)scosh%b} (6. 15)
From (3.23) and (4.00) through (%.02) we now obtain

L= (- 203_)'% G =0a E= %, (6.16)

with neglect of terms of ordex J'2. To the same gccuracy

&= - huoit o = hall-®) S apiel-rf (6.7

Thus, with neglect of texms of order Jz,

a =124t 1-e® = G212 f=1- 567, (6.18)
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as expected. Vhen we letex take derivatives of a genersting func-

tion with respect to L,G, and I, we shall have to use the expressions

(6.18) to replace them in the results by the elements a,e, and T *
In solving the canonical equations (%.15) and (4.16) we first

meke a canonicel transformation to new canonlcel variables L',G',

H', £', g', and h', so that the new Hamiltonian F. shell be inde-

pendent of 4' and h'. This first step will yield the short-periodic

effects. To carry it out, introduce the generating function

s(L',6',H',4,8,h) = 8§ + 5,(L',G",E',4,8), (6.19)
where
Sy =L'4+G'g+ Eh (6.20)
end where S, is to be of the first order in 0, Then follow the

1
von Zeipel method, as applied by Brouwer (1959) to satellite orbits.

3

. * * '
On splitting F dinto parts FO and Fl » we then have

* ¥
Fo(L,G,H) + F (LG, H,0,8) = Fo(L',6",E') + F (L',6', B, g')  (6.21)

along with the following relations connecting Sl and the primed

end unprimed vexriables:

_ 38 &1 T I e

L= =0+ A= ofr =4t gn

as- -~ as.’

—=a§= — '___.»_._o_s__ = ——
G =2 = @+ (6.22) g 5 "et T (6.23)

pte)

-BS—- r n! = S - —-—-1-:

== ¥ 8= N TRYOE
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Since the new Hemiltonian will not contain £' or h', we shall have
I' = H = constant and L' = constant. Insertion of (6.22) and

(6.23) into (6.21) then gives a partisl differentisl equation for

Sl:
) 3 3 S 28 38
R A 21 21 1 —=
Fo<I‘ * az b4 G' + o8 2 H) + F}_(L' + az 2 G'+ 38 2 H"e’ + —a'LT > 8 + aG!)
= F(L,6',B) + Fy(L',6',Hg + \G.) (6.24)

Taylor expansion in the neighborhood of L',G',H,%, and g, with

rejection of terms beyond the first order in O, , then gilves

T 5 3o 28
L' a3t G 38

X *
Fo(L',6',E) + + Fy (1,67, 8, 4,8)= Fy(L',6",B)+F (L',G',1,2)

(6.25)
The zeroth order terms lead to

Fo(L',G" LH = F (L‘,h‘ H) (6.26)
and the first order terxrms to

oFy 35S,  3F, 3
Q0 Y71 Q “71 . . * e
- aLr az + aGt an + FlC(L' ,G',H)?FIP(L'?G',H,g)+Fu(L' )G')H’E)g)::Fl(Ll }G"H G

(6.27)

In writing down (6.27) we have used (6.14) to express F, as a sum of

*
s and Fu and we have repleced g by g in F

the terms F 12 a

le? F

Ip
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permissible step involving an error of order O'E. In (6.27) the

terms independent of £ then yleld

*
F, = Flc(L',G',H) + Flp(L',G',H,g), : (6.28)

*
so that (6.26) and (6.28) together provide the new Hamiltonian F .

The remeining terxms, depending on £, then yield

Fy 35 Fy 35

3 T3 3 TuleELe), (6.29)
& partial @ifferential equation for S,. With use of (.17) it
becomes
3sS 3S
-.-:—L' - ___.]_- = ) t
2777}1 az + 217(1/2 Vl) ag = Fu(L )G' }H)‘e)g) (6.30)
Since va—vl is of order J2 and since Sl iz to be of order

= _ 3
o, =3, + Jg, it follows that 2m(y,-v;)3S,/dg Will be of order J3

and is thus to be rejected. Thus

2777/181 = JFM(L',G',H,E;g)M + @(g) (6-31)

To evaeluate the integral in (6.31), apply (6.15), (6.02), (6.04),
and (6.18). Singe Fiy has a factor O) = O(Jg), we cen meke a
mumber of epproximations at this point and still achieve our desired

accuracy. These are: drop the primes from L' and G' in (6.31),
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place

2y =n = p2 &~ =, (6.32)

express a,e, and 7, by means of (6.18), drop the primes from L'
and G' in calculating aSl/aL' and asl/ae', and finally use (6.18)

again to replace L,G, and H in the final formulas by a,e, and o

We obtain

3
S, = 0,Q,[(2# 'g‘ &%) (v-£)+(3e+ E e3)sinv + -E e®sinzy + 215 sin3v]

3
+ 0,Q,[ -E ez(v-l)cos2g+ %— sin(v-2g)+( —23e + -ge3)sin(v+2g)

3 2 3
+(&+ £e®)sin(2vieg)+(§+ §)sin(3reg)+ -sin(bvieg)+ fpsin(5v+eg)]
e3 32 e e3
*0)Q5[ g~ sin(vthg) + ge“sin(avihg) + (5 + F)sin(3v + k)

3 2 3
+(F + g stn(bvikg)+ (5 + f5-)stn(svrhe)t G sin(6rbe)+ S sin(Trtbe)]

+ Hg), (6.33)

where &(g) is a constant of integration. Here

L
2

=M L 7 lr L
Qi='é';;§-(a')qi=-'g('§) (p) % (6.34)
Where

<, 3 2 )
o =3 Bl eEsf-If) =P (6-35)
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With use of (6.18) and (6.33) we find

7
&Tis- = ul* n O(J’e), (6.36)
na

and
-Mhrh' F2 14- ) (6 .

Q + 105 .37)
1 oGl o2 'IT
L L
U Te i e
Q, = (1-=5)1-7) (6.38)
2 6G7 2 G2
kL
=3B T P .2
Q3 = ——;61:(;?- (1 - 22- ) (6.39)

through terms of oxder Jg .

To make S, purely short-periodic, one would have to choose

_og
& g) in such & wey that ens, = J .4 would vanish. It turns out

that &(g) would then not va.nish,obut would have to be a long-periodic
term, just cancelling a long-periodic term of oxder Jg arising from
the rest of the expression for Sl . The later calculation of long-
periodic effects, however, will be accurate only through order J2.

If we arbitrarily drop &{g), whose calculation would be extremely
lsboricus, the net effect will be only to leave in the short-periocdic
terms of G,%,g, and h some long-perlicdic impurities of order Jg, not

affecting the accuracy of the calculation.
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The errors of the short-periodic texrms will be of order Jg,
for two reasons. TFirsi, tThe short-periocdic terms of the reference
orbit were calculated only through terms of order Jg; second, the
present calculation makes use of elliptic epproximations, so that
a variation of the form Uls-f has an error of order J2 in £ and thus
of order Jg in O'Af . For this second reason the secular correc~
tions produced by the perturbing po‘centiallwil_‘l. also have errors
of order Jg, even though the first omitted term in the von Zeipel

L
2

T. Short-Periodic Terms

It is now straightforward but tedious to calculate the short-
pericdic terms. From (6.22), (6.31), (6.32), and (6.15), we find,

through terms of orxrder Jg

35, '
T =L-L=on, ('7.00)
where
I'h- )
| 2 10 2,-7/2 2
L, - - {(3— 15 + 22 1)) - (1-¢%) 721 + 331

2 ,
+ 5”5(3 - gﬂg)[(%)SCOS(%2g)- '3%(1‘32)-7/20052gJ+ -382 ng(%)scos(hvs{-l;g)}

(7.01)
From (6.22) and (6.33), we find
s
-é-é-]-‘=G-G’=GhGl{_, (7.02)




USCOMM=NBS=DC(

- 33 -
where
Gy = Qe[- (v-.e)sinZg 'ff cos(v-2g)+(3e + %—)cos(WZg)

2 3
+ (l+ )cos(2v+2g)+(e+ —E-)cos(3v+ 2g)+ cos(bvtog)+ 92-5 cos(5v+2g) ]

3[2e cos(v+1+g)+ 5e cos(2v~l-1+g)+(2e-l—2-e3)cos(3v+1+g)+(1+ =e )cos(hv*l-# )
6e 3e3 1 2 e3
+ (5 + g5 )cos(5vihg) + 2e"cos(brrlhg)+ gy cos(Trthe) ] (7.03)

Since the dependence of Sl on H is only through the Q's, the calcula-

tion of
98,
h=-nh = - ool o), By q (7.0k4)

is simple. First calculate the derivatives BQi/BH. From (6.37)

through (6.39) and the sufficiently accurzte relations H/G = cosI,

H2/G2 =1 - ng and G° = up, we find

39 T
.é.ﬁ_:]: = -:-LJ% (—5)4(7735- L)cosT
BQ
- 3 M5 T)eost (7.05)
3 b P
73 _ 35/ ey* 7, cosl
s - Bp) °
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From (7.04), (6.33), and (7.05) we then obtain

r 3
Byy = - (o) TeosT{3(TrE-4)[(2+ 367 (v-2)+(3e+ 3 S E— s1n2v+ 5 sin3v]

&3
+ h(3—77’1 )[ e (v—.@)coseg + —8- s:.n(v—2g)+( == + -—8-—) sin(wv+2g)

3e2 ' e e3 3e2 e3
+ (3+ F=)sin(2w2g)+( 5 + <) sin(3v+2g)+ 25— sin(bv+og)+ 1= sin(5v+2g)
N 578 16 5) ]

3 2 3 5

" 777%[%— sin(vrig)+ '3%' sin(2v+ 1‘8)*‘(‘2‘* F)sin(3vHhg)+(§+ -3%-) sin(bvths)
e 3@3 e2 . e3

+ (=5 —-5—5) sin(5v+hg) + T sin(6vthg)+ =3 sin(7v+)+g)]} (7.06)

To find £ - 4' and g - g, we use (6.23),(6.33), and (6.38)

through (6.40). We may write (6.33) as

5, = Gl,rQl(G,H)fl(e,v) + O‘hQE(G,H)fQ(e,v) + O‘LLQS(G,H)f3(e,v) s (7.07)

where

) 3 3
fl(e,v) = (1+ '% e2) (v=-£)+(3e + iﬁ-—)sinv + %eesin2v + 91~2- sin3v (7.08)

3 3e e3
(e,v) = -Ee (v—E)cong + —8- sin(v-2g)+( el )s:.n(v+2g)

2 3
+ (3 + $e%)sin(2veog)+(§ + %—)sih(weg)Jr 25~ sin(bvroght 5 sin(5v+20)

(7.09)
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3

3 2
£4(e,v) =4 sin(vthe)t - sin(eveg)+( § + G )sin(Frise)

3 - 2 3
+(%“‘ )sin(Lv+ng)+( '32 - 22 )sin(5v+)+g)+ %— sin(6vthg)+ -‘5% sin(Tvthe)

(7.10)
Then
BS1 | af:T. :L
—t = = av
JL L igl Qi( % ¥ e ) (7.11)
¥ 3 Ry o, 3 e oty oy ) 2
T - %, Zl 36 Gttt 1( T 3
R, as -
- Le v 222y (7.12)

g, X == =
ll'i:l 3G "1 3L G M 3L

From (6.37) through (6.39), with the same spproximaticns used in

obtaining (7.05), we find

9 To k

-3 ' - o + 357 )

3Q

.a_(_}é = (__) b1z - 82~70 + TS : (7.13)
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Next we need the elliptic approximations

1
22 - () e HaeP) (7.24)
2¢ 1, 1-e® |2
G- ¢ ua ) (7.25)

F 143 sinv = (l—-ea)'l(2sinv+%esin2v) (7.16)
e l—‘e2 T

To compute the aSl/ 3L and aSl/ 3G we need finally the six deriva-

tives afi/ae and afi/av, i=1,2,3. From (7.08) through (7.10)

we find

fl e2 3 e3
=% = 3e(v-2) * (3¢ & )sinv + Zesin2y + - sindv (7.17)
df 3 3
'87]: =1 + ?2332 + (3 + —3%—)cosv + —ge‘?cost&v + % cos3v (7.18)
ofp 3 3e2 . 3 o2, .
= = —ée(v—z)cos2g + =5 sin(v-2g)+( 5 * 23—)511'1(\1“'28)

2 2
+ 3o sin(2veg)+(} + F)sin(3rrg)+ 2 sin(lvr2g)+ f5-sin(5v2e)

(7.19)
3t

—

3 3
= = 3e2cos2g + T cos(v-2g)+( %eﬂ“ —3-%-)cOS(v+2g)+(l+=ge,2)003(2v+2g)

3 2 3
+( —ge + -3%—-)cos(3v' + 2g)+ _%e_ cos(bvtg) + %— cos(5vt2g)  (T7.20)




JSCOMM=NBS~DL

af ~ 2
—:éé = 9—3—- sin(wvhig)+ %?-sin(%hg)ﬂ%-!- —388——)sin( 3vthg)+ '—?—9 sin(hvthe)
5 ha 2
3 o2 e 3e
s (S %—)sin(Bv*-ll-g) + § sin(6rvhg) + 25— sin(Trrhg) (7.21)

of 3

3

2 3 2
—3 = —88- cos(v+hg)+ :’i-— cos(2vthg)+( —32—6- + ig—)cos(3v+hg)+(l+ .3,2»9__‘ zos(kvthg)

3 2 3
+( —%e— + %)cos(Sv**-ngH —3%- cos(By+lg)+ 98_ cos( Tvthg) (7.22)
There then follow

(=) o+ F B ) = se(1-ef)(v-a)H(5e £ - - )stav(se- st ¢

Se?' el‘L ‘763 ebr
+ ( 5 - TG) sin3v + -48—- sinlv+ Tz sinSv
(7.23)
£ Sf A
2y, %2 2 av - e, 2y,
- —= V= - 1k 5e°)sin2gy (1~ -4)cos2
(1-e7)( v + - 'ée) S(J‘ 5¢”) sin2z 5(\1-e Y{v-4)cos2g
2 L 3 R
+ ( —g—e— -%% Ysin(v-2g)+ -?—%—- siv{2v-2g) + »ZD~2~ sin(3v-2g
L
L 32 19\ . /o 8.3 3.3y 3.2 Sefn oo o
(% - o7 = )sin(vi2g)H(Ze - ge”)sin(2r2g)+(z +e - Sp-)sin(3vieg)
- 3 s 2 L
17e + S cinll oe 3e vos .
+ (—-—-8 + ) sin(bveg)+( = + fz5)sin(5vee)
3 )3
1.,
+ 22 sin(6rieg) + 5 sin(Tvee) (7.25)
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3f af iy 3 2 L
(1-e2)2 + 2 ) = &5 sinlv-be) - 25 sinbg -( B Z)sin(vike)
lle3 52 Te e2

-(e+ —g——)sin(2v+hg)-(%+ fe+ —3-)sin(3v+hg)+( )sin(hv+hg)

13, 21e° 13e 3e3
+ ( o= )s1n(5v+hg)+(2e+ )sin(6N+hg)

33e2 e)+ | e3 . elL ~
+( 255+ %Eﬂ)sin(7v+hg) + 527-51n(8v+hg)+ 3 sin(9v+hg) (7.23)

From (6.34), (7.14), and (7.16) it follows that

r.y . _ .23/
0 2= - 5D (=55 g (1=1,2,3) (7.26)

end then from (6.23), (T7.11), and (7.23) through (7.26) that

Lo =00, (7.27)

where
2,2 r
8, = ie%.ﬂ%_l (_5;)4 {6(8_uon§+3sng) [48(1-e%) (v-2)+ —é(lpo+l2e2—17e)+)sinv

3

+ 4(20-e2)siney + e(40-c2)sin3v + 10e sinky + eSsinSv]

- LrE(Tno-6)[240(1-¢%) (v=4) cos2g+5e sin( v-2g )+ 50 sin(2v-25)
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+ 156(16-3¢2) sin(v-2g)~20(+5¢>) sinog %9(8-21+e2-19e1‘)sin(v+2g)

+ 250(1-e?) sin(eve2g)t 22 2h+16c%-5¢ ") sin( Sr2g)+20(17+2e") sin(bv+2g)
+ 3e(6h+e2)sin(5v+2g)+50e2sin(6v+2g)+5e3sin(7v+2g)]

qgr35e s:.n(v—li-g) -350e s:I.n’-!-g—lOSe(8—¥'5a )sin(vﬂ-hg)

- 140(8+11e%) sin(2v+hg)- —29(8+20e2+7e1*)sin( 3r+hg)+840( 1-e2) sin(bv+l )

+ 14(104+8ke2-136 ") sin(Serhe)+140(16+ 367 sin(6vthe)

e

+15e 88*3e2) sin(Tv+lhg)$350e sin(8v+’+g)+3>e sin(9vthg) ]} (7.28)

From (6.23), (7.12), (7.1%), and (7.15), we find

-~

—= 1 (7.29)
i

g = ~(1-e2)2(4-47) - o,

B Moo

TN

"
T

Then, from (7.13) and (7.08) through (7‘,10), we find

~

g-g' = 0,81 » (7.30)

1
ey = ~(1-<%) - : ) 2( 136-5001+ 385m )[6(2*Qe21(v-ﬂ)
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10e s1n(va2g)+30e(h+e )31n(v*2g)+20(2+3e Ysin(2v+2g)

ES

1Oe(h+ee)sin(3v+2g)+15e2sin(hv+2g)+2e3sin(5v+2g)]

N

& r2(117E-k) [ 356 Psin(vig)+105e s in(2vthe )+ 35e b+ ) sin( Sv+he)

+ 35(2+ 3¢2) sin(lyrlg)+ole (b 3¢2) sin(5v+hg)

+ 35ecsin(Grthg) + Se s:.n('Tv*l-ng)} (7.31)

This concludes the golution for the short-periodic terms arising
frow the residual fourth harmonic, with ccefficient 0) = +J2

A

8. Iong-Periciic

RS
2HTLD

. #
By (6.21) and (6.28) the Hamiltonien F 1is

* . ,
F o= F(L,0",H) + Fp (L,67,H) + FlP(L‘,G‘,H,g') ,  (8.00)

short-periodic terms heving been eliminated. We now try to find
new canonical varisbles L',G",H",4",g", and h', corresponding to

. >
& new Hemiltcenien F G, E") 4+ Fl(L“,G",H”), so that

F (L G* E) + F (L' GIJH) + Fl \Ll e H;c ) = F (Ln G" H“)-F"‘ (L"

(8.01)

’G”’H:I>
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will be constants

and :
" BFH . Fﬁé - _ F%Fx
wo_ L a v 4 3
L = —a'in— & h %ﬁn—- (8.02)

To firnd the necessary canonical transformation, we introduce the

generating function

* *
S =1"4' + g"g' + E'h" + Sl(L“,G",H",g') (8.03)
*
where Sl is to be of order ¢,. Then
¥ * g*
B} S A8 !
IS o Lo 1 no_ I = T .
L 7 L VA —gﬂr Y + -g-r:r
* s* * 3s
r _ ES " o 1 "o S I | 1 \
Gf = =G (8.0L) g' = 'g'gﬁ' =g+ (8.05)
% *
~S * PYe)
o S o~
H=H === 5" n' = S = hf o+ o
= S B 3E
Insertion of (8.0k) and (8.05) into (8.01) leads to
~ar * * *
& T 141 CS Enl 1 \i] ES:L 1 11 abl aSl
FG(L7 56" =7 LB+ Fy (11,07 + —=5,8) + Fy (L1,6% = ohe )
_ Fée—x- + Fe(-x (8.06)
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vhose Tgylor expansion,

nigher, is

FO(LI ,G",H> + -é-é-n'

Splitting (8.07) into

oFg 35

with neglect of terms of order Gi or

4

FlC(L' .’G")H)+ FlP(L' :G")H:g' )

I
¢

1 (8.07)

zeroth order and first order terms yields,

respectively,
H¥%
F, = FO(L',G",H) (8.08)
T S*
3F, B o
Y70 l_,_-l - __T*
T e ¢ Fie + Fip = F. (8.09)

Resolution of (8.09) into constant and long-periodic terms then

shows that
H It
F, = Flc(L’,G LH) (8.10)
— = - t LU < P
'é‘é'fr agl FlP(L 9G Py Py ) (8'11)
With use of (%.17) and (6.13) and of double primes to denote
quantities corresponding to G", (8.11) becomes
¥ 15t
3 ur . _
27(Yl~ Vi) = } = ek e"g(l-e"e) T/znf2(3 - z:';";"z)cosa,g;' (8.12)
1 27 38 32&'5 o] 2 0
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By Egs. (7.3%) and (7.37) of en earlier peper (Vinti 1961 a), we have

2
3r J n
2,7(:;5‘_ yg) = - . (Scos T«1)+ O(Je)
P
L 2. ‘
iy Jd 2
=13;r"e2(1__‘5_f_1_)+0(3§) (8.13)
L;3Gn]+ G“E

On inserting (8.13) into (8.12) and replacing elements by Delaunay

variables, we find

* 22
35 SHT 0y,

S Y e ><¢ )<1-7——~~)<1-s—-——ﬁ2 Toosg’  (8.1h)
o8& 16:1'(:"3 A

Integration then ylelds

2
. 5u°r°0), "2 2 2
8y = - 2t (1~ £ (3- E5) (-7 £ yes By temee (8.35)
32J-2GH L] G‘“ \‘n G"
Then
* 2 25
35 S5u'r =2 -1
al} - - 3 (1 %)(1—7 5——5)(1-31%—) sin2g' (8.16)
16J2G"L‘ G" G" Gg"
o2
aSl S5u Ie()'h HE G"E H2 :!2
= 3(2- ) (1-9 ==5)- (7—5 E)(1-5 ————)
aG‘ 32J2G"h [ s G"2 LIQ Gu L‘d
6 ::2
- 8 —E—"-g(l - %——)(1 -5 da ) Jsin2g’ (8.17)
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*
35 S5u"r"C "2 H2 H2 N HQ
S T e h H G -1 H -2
= = 1- —}r3 + 16 _.__(1-5_.__\ . 1.0__.,: (1-5: \ sinse!
BH 16 dgf n"5\ L!d)“3 G’“2 Gngl Gﬂ ! \ ‘Gn_/ 1 g
(8.18)

We now express the long-periodic terms in the notation of (5.00) and

.(5.01).
(07 (oF
1" )-‘- ~ n Ll-"'
G' =G = =G g'-g =58
J2 L J2 L
(8.19)
(of (s)
L L~
LY = A" = = g h'-h" = —
J2 L -.T2 4

If we then use (8.04),(8.05),(8.14), and (8.16) through (8.19) and
place 6"2= p, L'%= pa, E/G"= cosI, G"2/112 = 1-e2, g' = unperturbed

g as given by (4.18), we find to the required accuracy

2
5rmn
o~ D - o - - 2 - .
G, = - —]%- e2(l—e) 3/2ﬂ§(1-7cos2;)(.;.—;cos 1) lcos2g (8.20)
7 = 2428)2(1-62) 3, 2(1-T00s?T) (1-50052T) "Lsinze (8.21)
LT 16Va o ; © ‘
r .
—~ 2 _ _ -
g, = - %('Ee-) [2+e2-;5(2+3e2)cosQI-8(2+5e2)coshi(l-zcosgx) 1
-80e2cos6I(lr5COSQI)'Q]Sin2g (8.22)

~ r - } -
b, = - %6("5)2\.2C0SI[A+1/ coseI(l-cosgI) l+h0cosqI(l-5c:os2I) 2]sin2g

(8.23)
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9. Secular Effects

an\ f o 5 : N 1
We now heve to use {8.02),(8.08),(8.10), and (4.17) to obtain £" ,

g", and h" as linear functions of the time. From (4.17) and (8.08)

we obtain
*% K *K
oF 3F ) o ’ .
0 = “2177/" O 2’”(Vl V2) 'é.ﬁ-— = 21T(V2 sgnaB'lfs) . (9'00)

SIT 1 36

From (8.10) and (6.12), with use of e'2= 1-6"2/L'2, 122 par, ena

n"g 1- H2/G"2, we have with sufficient accuracy
6.4
TS0 @ H2 7t
F, = - ——=—= (5-3 )(3-30 ~—5 + 35 =) (9.01)
1285 3T L2 —E
Then
*% 6 L
aFl 2{-5“ r'0')+ H2 Hl"
ST l28L']+G”7 )(3"30 -5 + 35 g‘"'[;) (9.02)
BFl 151-‘61')‘1.0'1‘ ( 112) 18 nn N ) H2
e T-3 =) + \7 "—- - 15
= oon3e8 2 )
: G"2 Hh
+ 7(55-27 =—5) =x] (9.03)
I Gn
6 11-
oF 15u I' ne 2
- e 5(5-3 ) (37 £ (9.0k)
c 32Lx JG"9 Lt z G_n2
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Comyianl

Since our usmpewriurbed orbital elements a,e; and I, and thug
the frequencies vy and v,, correspond to L', G", and H, we may
drop the double primes from the p's in (9.00). Also, to our
specified accuracy, we may put 2 = 1-¢" /L'2, 12 =la, and 'r;§=l—H2 /G"2
in (9.02) through (9.04). Then, with the unperturbed values 4,g, and

h given by (1&.;.8) , We find
2" = 4+ Ok, g" = gt0,8), W' = h+ophy, (9.05)

where

r L
by = - 1 (’z'?)l‘ a(1-6%)%(3 - 30c0sI + 35c0s 1) (9.06)

- T
gp = - —]%228' (Ee_)h n[3()++3e2) - 18(8+7e2)c032I + 7(2&27e2)coshI]'b

(9.07)

2

15 re )-l- 2 —f - -
By = -3 (—}5—} n(2+3e“)cosI(3-7ccsI)t S9-08)

We postpone summarizing the resulis for the residuval fourth harmonic

until the complete algorithm in Section 11.

10. Effects of the Third Zonal Harmonic

By (2.01) the contribution of the third zomal harmonic to the

potential is

3 b

LV =prx J3P3(sin9) ' (10.00)
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Corresponding to (3.02), this leads to

AFl = -l rg r-h' J3P3(sin6) (10.01)
and thus to
“13 L1 L
AF, = - o2 O 3 g B ) (@ stn(vre)- § m(@) sin(3vr36) 1,
(10.02)

corresponding to (6.06). Following the notation of Section 6,

we then find

2r pr
-1 2y-5/2 1 R
AR = ()7 ¢ A§u=-—§—%dbe)W(-§%+§m§m%,
0]
(10.03)
which is purely long-periodic, so That
AT, = A.Flp (10.04) AF, =0 (10.05)

Since AFlc = 0, there are no secular effects.

The short-periocdic part of AFl is then

; el 3,153
L\“Fl!, = AFl- A\Flm = = —;_:—- 3|_( ) "O —8-“?‘0){( ) s:.n(v-hé)

- o(1-62)"%/2 singy - (a)”sin(smg)] (10.06)
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On following the same procedure as in Section 6, we find

3AS

1_ -1
Y (2my ) "AF, (10.07)
where
As, = -(2177;1)’l J‘ AF,, 44 (10.08)
el L_.2y-5/2 2 >
= - ;‘6"‘1;‘ J3(1"e ) ?70{3(1-5cos I)[12e(v-£)sing+3e cos(v-g)
ns

-6( 2+e2) cos(wvtg)-6ecos(2vtg) —eacos( 3v+g) ]+'ng [lSezcos (v+3g)+30ecos(&viz

+ 10(2+e%) cos( 3v+3g)+15ecos (v 3g)+ 36 7cos(5v+ 3¢) 1} (10.09)

Before telking derivatives of (10.09) with respect to L' and G

one must replace e- by l—G'e/L'Q, 'ng by l—Hz/G'z, end a by L'a/;.t.

The short-pericdic effecis are thea ziven Uy

aASl aASl
) =L 1" = J'3L3 i L=li= J3£3
FYAN Sl 34 Sl \
=G -3' = ol - = Fepri= o o
Y G J'3G3 (10.10) ey z-g J3b3 (10.11)
34 8, aASl
==H-H'=0 - = h-h's J

3h o 373°
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where
nr3 Y ,
L3 == "'gg {<" 'g Mot %iﬂg)[(%) Siﬁ(ﬂg)-e(l—ez)-s/%ing]
8-,0( )l*sin(3v+3g)]} (10.12)

2
G3 = -na3(l-e2)%(-%-)3{(- -gno -18‘5078) [e(v-4)cosg + E— sin(v-g)

2
+(1+3e%)sin(vrg)+ke sin(eve)+ 3 £ sin(3v+e) - FEL rsin(ﬁ?s>+—e~~--\2v+3b)

>
+ 3;(1+ 1e2)sin(3v+3g)+ Fsin(iv3g)t Z5 sin(5v+3e) 1} (10.13)

LT
4y = o (1-32)2(-58-)3 3(5n§—h)[(l—e2)(v-»@)sing +(2+3e)cosg
e

3
8~\ll+-3e Yeos(v-g)+ie cos(2v— N = cos(3v—g)—e(l—e Yeos(vtg)

3 e 2 1 2 63
- 5cos(2vig) - o (34-e")cos(3vig)- e cos(kvig)- =z cos(Svre) )
1 2 e3 N e 2 ‘ 1, 2\ ,
+ 5'3” ol- 2e“cos3g- 1z cos(v-3g)- "8‘(6‘*'58 Yeos(v+3g)-(5+e jcos(2v+3g)

+ £(1-¢%) con (3738} (5+e%)cos (bt 3g)+ 5 (Shre®)cos(5v+3g)
3
+ —éjegcos(éerSg)-l- % cos(Tv+3g) ]} (10.1%)

M
s = -8 Fe, - HEHY R 9o elv-2)sing + - coslr)

2 2
~(1+3e®) cos(v+g) -kecos(2vrs)- S5 cos(3ve) 151, (875 -3)[ 7 cos(v+3g)
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1 14,1 2 & ¢
+hecos(2v+3g) + F(1+he")cos(3v3g)+ 1 cos(bv+3g)+ Fpeos(5v+3e) ) (10.15)
b =(=2)3( Beotr(1- 3 sin°T)[e(v-4)sing + e cos(v-g)-(1+ke”) cos(v+g)

3\p /1 2% [ o & 28 JcoslvTe

2 2
-e cos(2w+2g)- -%2- cos(3v+2g) J- %’_—2 sin2I[ -E— cos(v+3g)

2 .
+ Zecos(2w+3g)+ %(l%ee)cos(%ﬁgﬁ ﬁcos(lx-w3g)+ 92-5cos(5v+3g) ]} (10.16)

Continuing on to the long-periocdic effects and following the

procedures of Section 8, we find

**
(AFl) =0, (10.27)

so that the third harmonic gives no seculsr changes, end

rYAN Sz
~ = - AF (10.18"

en(vy- vp) v

Now -
9_,3 1 o

= ——— "(1- E_—._ FEON | \
Fip =" 8 ud J3n0(1 2 G:‘E)Slng ? (10.19)

by (10.03) and (10.04). With use of (10.18) and (10.19) and of
(8.13) for 27.’(115'_- vp ) , ve find
*
A Sl _ H

= I o siog' ,

N
-
S
[N
o

s
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so that
N ;_’,I‘ i
A S-;_ = -3 -é-n—e- 3_—3- e"ngcosg' (10.21)
2
It follows that
* *

4 Sl r_pH oA Sl g J. 4.
_é.:z.;._=L-L=o -—-a-i-,-—_,e,- = I t,
) *

A S] . A Sy L
Yl G'-g" = J3G3 (10.22) - = g'-g" = J3g3

*
34 Sl 3l Sl n %
ah' = H-E"= 0 - ch =h'-h" = ’I3h3 2

Where

~ 2y-% 10.2k)

G3 =3 rena(l-e ) e7),sing (10.

~ r 2 %—

Zg = 1 ;f Slile— sinl cosg (10.25)

r 2 -
§3 =3 -;(e:;;l]: - SmI)cosg (10.26)
h3 = -3 > ecotl cosg (10.27)

A summaxy of the results for the third harmonic will appear in

the next section, which gives the complete algorithm.

(10.23)
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11. The Complete Algorithm

We shall sumarize results by writing out the complete algorithm
for the calculation of the motion in the potential field (1.00), as
modified by the third harmonic and the residual fourth harmonic. This
will involve a repetition, with some changes, of about two pages of an
earlier ‘paper (Vinti 1961 a), but it is highly desireble to assemble’
the whole solution in one pie.ce.

Let the planetary constants u, Ty JIps J'3, and 9 be given,

along with the constant orbital elements a,e,I,4,g,, and 53 . To
calculate the
Unperturbed Reference Orbit
ccmpute
% 2
c=rJ3 Mo = sinl p = a(l-e")
D= (ap-ce)(ap-c2n3)+ ll-aaceﬂg D¥= llazce(l-'ng)+ D
A= -2ac2'D'1(1-ng)(ap-c2ng) B = ce'ngD'lD‘
e -1
-1 = P2 -2 =
by 2A b, = B 20 ;.!.(a+b1)
ag ' 1 1
-l = = =02(1- -1ns = (-on )2 3.
Boq = 84Py= ~C (1 T)g)+apD 1 %, ( 20’1) (aOPO)_ >0
02172 1
o S
= g, (1- )2cosI L2 2D _ 2.2 _ -1
3 = 0 5% n, = = k=cp Q= MMy

apD" '
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. od
A. = (1-e7)%p ¥ (b /o) P (b./b.) R
. n L oz jol

(1-63)2 7 50 (by/p)™ 2 (B, /0,) Rnt(l-ea)%] ’
n=

A2

where Pn(x) is the legendre polynomial of degree n and where
= 2P -1 2
Rn(x) = x n(x' ), always a polynomial of degree [n/2] in x" .

A = (1-2)2p38 DR [(1-9)2
37 P o mm2 L 15

where

i
Dy = I (-1 (/) (/) 2y (b/5)

D,y = %o (<13 (c/p)P 2 (b /p) 2 B, (b)/0)
n=

3

B, = 27" ¢ o [K(q) - E(q)] B, = 217" K(q) ,

where K(q) and E(q) are the complete elliptic integrsls of the
first and second kinds, respectively. IT may be convenient to have

the series

-t

2, 15 &L : 4
Bl="2"+"i%q +"1—2'gq+-oo B2=l+-)]-:q_ +'@Iq Foeoe
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Continue with

~ IPRYi 2n
i , i m=1 (Z2nj: 7
-2\=% 2 -2m _ __(om): 0

B, =1-(1-n.-)"2- T r n where f = D .
3 "2 w2 % 2 7 B 2ty pey 2R(n!)?

1.
.A._u_=%(l-e2)%L p- e( -2b,b p *+ b, ) A= —33—5(1--e2)2 D 3 bg R
- - - 2 oy =k
Aoy = (16917 27 epope(HE-v2)p 7R Do n2(1+ £-0p7 3 o (b3S )p 7

- P (3Rl § B S 3 vi(6ePre ™

-1 _
A23 = (l—e2)2 (—b p 3+ by p l‘)

1
Ay, = é—2.6(1-@2)29'5 bgel*

2
= (2-62%73 e[+ by N3+ 35 )op2(EE + Ak + 363)]
23 -3 &2 12 20 e8 3 2y 1.2, 2y
Ap = ()T e+ fop ™ F -+ 2B+ )y

b

z - -1_1 2
A33=(l-e2)ap3e3[-i-23=pl 3P (ab +e)]

Ay, = - —;-2- (1-e2)F 5 et} B2 + o)

2'1'77)1 = (-2(\(]-)%(3_ + 'bl + Al + @ ,70 . Bl B"l)-l

2 2.
= (

o5m03)* ”51 AQB;_l(a Th At ’70 > B B 1)-1
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where
Ml = (atb 7‘*[ (A._L+c ’?o A,B.B, B, )v + 'lT'( 2a1)2(a2-a )" ”o 51n(EU +21 )]

The term vy is then given by placing v = Ms+vo-!*v:L and E = Ms+EO+El

in the anomaly connections. Then

o o= (- 2<y1) 2 o%) ’lB Ly )+ A21s1n(M +v )+ sin(2Ms + evo)]

2
-1
+ -g— By sin(2p + 2y,)

Finally
E, = [1-e' cos(M +E )] lM
whers
M, = -{atb;)” [A,v 1Ay sin(M v+ Ay, sin(2M + 2v)

i L 2 2
+ 02( -2&1) 2( o.g—oai) 2,”(3) {Blzbl—%gblcos ( 22})84-2@/)0) - '%’" sin( 2z,bs+2gbo )+ %Hsin(hl!)sﬂﬂ,’)o) ;

i i m acin = 4 + - + $ o+ X
Then v, is fourd by plsecing v : MSJ.VOTVI-I-VQ and E—-'Ms EO-rEl E2 in

. the snomaly cornections and

1 1
b o=( R-TOR-IPVAY- SR §
;aa-.( 2011) (c% Q’B) Ty B [A vyt AV cos(MS+vo)+ 28,,V1 cos(2Ms+2vo)

+ A,,381n(3M +3v0)+ hs1n( M ++v )]-!- %— [ulcos(a) + 221)0)

2 2
+ 3%— s:.n(2211 + 2, ) - @%h sin()-l-z,bs+ hzbo)]
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The uniformising variebles E, v, and ) are then given by
= M + = <+ = +d .
E = M EP, v Ms EP, and P b z,)P If t 4is the time, their

seculer parts Ms and zps are glven exactly by

= h =
Ms .%O + eqﬂllt g zo + gyt 2777/2’0

Let the perdiodic parts be split as follows: EP = EO+E1+E2,

Vo =Vo vy v, and lpp = zbO + §bl + ;bz, where, e.g., E, contains
terms of order J‘g, J'2, end Jg, El conteins terms of order J2 end Jg »

and E2 conteins terms of order Jg only.

Then EO is given by the Kepler equation

-al +8 . )=
M+ E, -e sin(M, o) M,

where e'= a,ce(ea.+'bj_)":L <e. The term v, is then given by placing

v =M +v
S

0 end E = Ms+vo in the asnom=lv copnections

L -
cosv = (cosE—e)(ZL-ec:osE)"l sinv = (l—ez)z(l—ecosE) Leinm
or equivalent relations. (Note that € here is the original e and not
the e’ in the Kepler equation.) Then
b, = (-2%)'%( 2. '2)% n’l A Bty
o h/ Tlagm 8507 Mg By By Y

The term El is now given by

E, = [l—e’cos(Ms-l-Eo)]'l M -%e'[l—e’cos(Ms+Eo)]-3 M'.:aL sin(Ms+Eo) 5
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Unperturbed Reference Orbit

the spheroidal coordinetes p &nd n are then glven by

p = a(l-ecosE) = (l+ecosv)-lp N = nysind ,
where E = b'Is+EO+E1+E2 and v = Ms+vo+vl+v . To obtain the

unperturbed right ascension & , first calculate an angle X, equall-

ing ¥ whenever ¥ is a miltiple of 7/2 and satisfying

1 1 L
cosy =(l—'t7§ singz,b)-zcosz,b sin¥ = (l—ng)z(l-ng sinez/)) 2gind
Then

= Bra (o 2)'% [(x 2)'%(1- "2)'% + B+ o 1 'hsinazb]
¢ = 373 0‘42"&3 770 "770 772 X 3 30 /o 772

2 -3 4
-c 0,3(_20/1 ) [A3v +::’l A&lsinnv]

The Zonal Harmonic Perturbations

Within the accuracy of calculation of the perturbations, we may
use either the approximate or the accurate formules listed below.
(Use of the approximate formilas wey involve more work than use of
the eccurate ones, because the latter will elready be known from the

solution of the unperturbed problem.) Compute \

Approxinmste Formula Accurate Formuls
1
n P;?. 3-3/ 2

PSS

£O + nt MS = £O+ 21Tv1t
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3.e2 . 2. _ .
g go+ -E_g—j—-) n dewcos i-1)t 8y T M, = V)T
E Ms + EO Ms+EO+E1+E2
v Ms * vy | Ms-!-vo-**v:l_ﬁr2

Also, r = p, within the accuracy of the calculation. Then compute

Third Harmonic Short-Periodic Quantities

nr3

Ly = - ---—[(- 2 15 3 ){(a)l*sa.n(vﬁ-g) - e(l—ee)"s/"2 sing}
- 2 (&) sin(3v+38)]
2
¢, = -ns?(1-c2)( e)3{( 3 ngt TR [e(v-4)cosg + £~ sin(v-g)
2
+ (1+3e®)sin(vg) + fesin(zvig)t 5 sin(3vee)]
15 3. &° Lo eate i1l 2y
- > nl - sin(v+3g)+zesin(avt3g)+ $(I+ze)sin(3v+3e)
2

+ § sin(lrt3g) + 5 sin(5vr3g) 7}

{Note that v-4 = Vs within the accuracy of the calculation.)
2 .!-_ x . ’ N ’
Ly (1 Y2(=2) Pno(5g-4) [ (1-6%)(v-4)singH (1+3e”) cose &(14-3¢%)cos(v-g )

3 ~
+ kePcos(2v-g)+ Sycos(3v-g)-e(1-c")cos(vtg)- Scos(2vig)- Fr(H-e")cos(3r+)

3 LT 3
2 5 2
-2e“cos(kv+g)- %cos(Sv-&-g)y &(l—e2)2(§)3rg[-%eecos 3g- 7% cos(v-3g)
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i
oojo
—~
(@)
-+

\N
(14

.~
Q

0s(v+3g)-(3re”) cos(vt3g)+ S(1-e7)cos(3v+3g)HE(5+e”)cos(kv+ 3g)
R Cac rbeeos(r3a)+ £ cos(Tet3g)
Toiohe Yeos(5v+3g)+ze cos(Ev+ig 7g cos(Tv+3g)]
(-2 Ee - 303 030 or)re(rtsing + & cos(v-a)
g5 = -(1- - R(— 3977 + [e(v-4)sing + 3~ cos(v-g
2
_(1%e2)cos(v+g)-—§ecos(2v+g)- 91‘2' cos(3v+g) ]
e 2
( )3n, (8170-3)( T COS(WBg)+~eCOS(2v+3g)+ *(lﬂ‘*‘e )eos(3v+3g)
+ e Lt 2 62
I cos(bv+3g) + 5 cos(5v+3g)

2
h3 =(%)3{ —gcotI(l- -jf? 'rgg) [e(v-4)sing + %— cos(v—g)-(l+%e2)cos(v+g)

2 2
-Zecos(2y+g)- 51-2— cos(3v+g) - %% sin2I[ -E-— cos(w+3g)+3ecos(2v+3g)

+ %(1%82)c08(3v+38) + 5 cos(bv3g) + cw ces(5v+3g) 1}

Third Harmoniec Long~-Pericdic Guantities

~ L
G3 =% rena(l-ee) 2 e, sing

T =l (1-2)2
3= Sae ~-e 770 cosg
w I'e ecosQI sinl
=% ( sinl Jeosg
T

‘ES = - —2—3 ecotIcosg

"
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Fourth Harmonic Short-Periodic Quantities

I, - - 32 (31 + 2 @ (1) P 22
+ 51;0(3- )[(a)scos(2v+2g;) £e (l -e ) -1/2 cos2g)
35 ll'(--)scos()-l~w.r‘+14-g)}
- LI
%--ge4<@> ﬁ&—%m-f(wmﬂwg-rwwwa@
' 3
+ (3et 31i—3)cos(v+2g)+(l+ -23- ee)cos(2v+2g)+(e+ ﬁ—-)cos(3v+2g)
2 3 2
+ §-§— cos(kvt2g) + Z cos(5wt2g)] + 170[2 e cos(v+1+cr)+ ———- cos(2vtiy,

3
+(2e+ked)cos(3rthg)+(1+ —gez)cos(lhri-hg)ﬂ -—65-6— + —%g——)cos(swhg)
3
+ %_eg cos(6v+hg) + %—_ cos('Tv*l-)-Lg)]}
- S %ml— {6(8-40rf + 3575)786(1-¢%) (v-2)

+ -—()40 + 1262 -1Te )s1nv+1+(20- 2)81n2v+e(ho-e )sin3v+10e sinhv

+ &3sin SVJ-#n§(7n§-6)[2h0(1—e2>(v-z)cos2g + 5eJs1in(3v-2g)
+50 &“sin(2y-2g) + 15e(16-3e2)sin(v-2g)-20(1h+ 5¢°)sindg

+ .:l-éQ( 8-2)+e2-l9eh) sin(v%'Qg)+2liO(l-e2) sin(2v+2g)+ }-e.Q( 21++16e2-5e]+) sin(3v+2g)

+ 20(17+2e2) sin(kv+2g)+3e(6h+e® ) sin( Sv+2g)+50e “sin( Gv+2g)+5e Ssin( Tries) ]
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+ ’:725[35e3sin(v-1+g)-350e251nhg-1053(8+532)sin(Whg)-lhO(S—i-llez)sin(2v~i-1+g)
- %?(8+eoe2+7e“)sin<3v+ug)+auo(1-e2)sin(uv+ug)ﬁ%§(104+8#e2-13e”)sin(sv+hg)

+ 140(16+3¢%) sin( 6v+hg)+15e( 88+ 3¢) sin( Tr+hg)+350esin( Svthg)

+ 35e3sin( ovtlig) ]}

y o (/o)
g,y = '(1'62)-é241‘ ;_2 {2(136-5007;3 + 385ng)[6(2+3e2)(v-/&)

+9e{h+e) sinv+9easin2v+e3sin3v]-2(l2-82n§+77ng) [60e2(v-z) cos2g

+ 10e3sin(v-2g)+30e(b+e>) sin(v+2g)+20(2+ 3% ) sin(ov+2g ) +10e( b+e2) sin( 3v+2g)
2 . un 3. o, 2 3 2 ,

+ 15" sin(Lv+2z)+2e sm(5v+2g)]+710(11770—1+)[358 sin(v+ig)+105e“sin(2v+lg)

+ 35&( h—i—ez) sin(3v+hg)+35 (2+3e2) sin( 1'rv+4g)+2le(2++3«32) sin(Sv+hg)
+ 3Seesin(6v+hg) + 5€3sin(7v”3'2+8) ]}
- )
n= - %(f)”cosz{xmg-h)[(ﬁ 32) (v-0)+(3e+ fe¥)stav + Je® sinav

3 3 3
+ %2— sin3v]+l',(3-717§)[ Eee(v-Z)c052g+ -g-—sin(v—2g)+( %‘3+ §-§—)sin(v+2g)

2
+ (5

3 2 3
Ysin(2v+rog )+ (Set+ %—-) sin(3r2g)+ 33%- sin(Wv+og)+ %sin(5W2g)]
2 e3 Qee 1 e3 1 _zeg
+ Trgl gein(v+hg)+ =5 sin(2vilig)+(Fet g-)sin(3wrhg)+ (i <g-)sin(lvthg)

se , 3¢3 e” >
+( 45 + 55 sin(Svikg)t gsin(bvthig)+ o7 sin( TV‘”PS)]}




USCOMM=NBS~DC

- 62 -

Fourth Harmonlc Long-Pericdic Quantities

2

Sr™n ;
G, = - --:,:%— e2(l-e2)-3/2ng(l-7c0521)(l—Scosal)-lcoszg

-~ T L x5 -
2, = 15_6(23)2(1_32) an(l-'rcosal)(l-lgosel) Lsinog

T
'é'h - . _35_2_(5'_3_)2[2,4_ e2_3(2+3e2)coseI - 8(2+5e2)cosl‘I(l-ScoseI)'l

-80e2c:os6I(l—ScosEI)-ajsin.Qg

n, = - %(—I-?)E egcosI[3+l6coszI(l-ScosEI)-1+1+Ocosh'I(l-5cos2I)-2]sin2g

Fourth Harmonic Secular Quantities

e T b
zhz = - -1-12% (---1-.‘})lL n(1-e2)3( 3-30cos21+35cos1*1)t
T A \
&p = - 1'2% (—};)k n[3()++3e2)-18(8+7e2)coseI+7(28+2‘Ze2)cosgI]t
h = - 22 (SE)L" n(2+3e2)cosI(3-7coszI)t
L2 3?2 'p

With O E'Jll_ + Jg » next compute the variations in the

Delaunay variables

€L=J’3L3+0')+Ll‘_ SE=0
J o
_ 3¢z X
Sa= Tog + 7 Gyt 0, + o G,
J o
P )+~
$e = Tghy * 3-2 By + oy + )+ 5 2,




. 0
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. J o
b = 7 +_32'.a.g,f"_ deor \4-__)'.‘::'
UH 3233 J‘2 b3 Ll'\b)"-l 0421 2 5}+
J 0'\ P
- 3% A
$h = Tghy + 7, by + o-h(hhl +hl‘_2) + 7, by,

The variaetions of the elements a,e, and My axre then

, 1 2
fa =2 51 ge=§§,§L-(ae)“l(§)’2'5G 5w0=%7—og-&c;

The variations in the uniformising variables E, v, and  are

E

]

(p/2)(§4 + sinE e)

Qe

(1—e2)%(p/a) [{E + (l-ee)'lsinE §e]

§v
§¥

. of :
The variations in the spherie@al coordinates p, 7, and ¢ are

v+ §g

then

O(P = (P/&) Ja - acosE {e + aesink JE
d(?’) = (7)/770) c{'no + 7y cosd ng

545 = fn+ (l—‘ng s:inzdﬁ)"l cosI[§ P - %(‘.up)'% sin2) 4 6]




s
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The final rectangular coordinates X + XX, Y + {Y, and Z + JZ

are then given by
X+ 5%+ 1(v+ )= [(p + 5p)2+c21%[1—(?7+5n)2]%expi(¢ +§2)

$z=pdn+ndp

12. Discussion of Results

chosen
Since the meeccosesy accuracy of the quan'tlties gppearing in
with fadlor ef ordes

the present perturbation :bbtsmw is only tha:b of an elliptic approxima-

c_/’.ac/r-a-J <5 =s 205

tion, the variations in the Delaunay variables may be eguabed=&o those

pﬂ’f”"f""’, (/959)
found by Brouwer (1959) or by Kozai (1962). Comparison of the sbove
A or o]{ gé;—f)'n-Tc/
results with those of Brouwer shows that the long-periocdic effects
A
of the third and fourth harmonies and the secular effects of the fourth

o) .}a)_.j-)n/‘b/)' Fherr
agree with Brouwer's A provided that one replaces ks J' by J, +J2

Comparison with Kozal shows that the short-periodic effects agree with

(1)
his. Similarly one can read out of Xozal's paper the long-periodic effects
of J_, 'T’ and J, and the long-periodic and secular effects of J6 and

5’ 9
J'8; in so doing one ought in principle to replace his J6 by J‘6-J

and his J8 by J'8+Jg s but this would be going beyond the accuracy of

the present calculation. Since the author's orvital elements differ
from Kozai's by terms of order J, 52 the agreement with Kozai holds
only through terms of order J2 for long-pericdic effects and

through texrms of oxder Jg for short-periodic effects.

1. On his page 451, however, in the first line for AG, the
expression cos2g should De cosg.
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To compare accuracies, we construct the following table, noting
that the author's reference orbit accounts for about 99.5% of the
devistion of the earth's potential from sphericel symmetry. Thus my

perturbation is only about 0.5% of Kozal's, perturbatien.
A

Effects of 99.5% of Deviation from Sphericity

Secular Accuracy Short-Periodic Long-Periodic Accuracy
Accuracy
Kozai Through J'g Through Jg Terms do not exist
Author Exact Through Jg Terms do not exist

Effects of Remaining 0.5% of Deviation from Spherity

Secular Accuracy Short-Periodic Long-Periodic Accuracy
Accuracy
Kozal Through J‘g Through Jg Through Jg
Author Through Jg Through Jg Through J, 5

Thus the advantages of the author’s treabtment are the exact
solution for the secular effects arising from 99.5% of the aspherical
deviation and the much shorter algorithm. The principal advantage cof
Kozai's treatment, arising in comnection with the remalning Q.5% of
the aspherical deviation, is his more accurate solution for the long-

periodic terms.
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The present solution, like all previous perturbation theories,
rives rise to the resonance denominator l-Scosel in some of the
long-periodic terms. These terms are thus not reliable if one considers
inclinations I sufficlently close to 63.1° or 116.6°. For such inclin-
ations one could improve the accuracy by boldly dropping the long-
periodic terms with coefficient J‘h+J§ or, better, by superposing o
the present tredtment Izsak's(1962) solution of the problem of the
critical inclinastion.

The element e occurs in the denominators of 5e, 1,3, g3, Z3’ §3
'ela-l’ and 87 and thus also in the dencminastors of Sz, 5g, SE, Sv,
and 5 . No corresponding trouble occurs in the coordinates, however.
To test this point, reject all texrms except those containing e-l. One

~

then finds ,?,3 = -8 !,3 = -85 zhl = =815 L3 = G3, Ll;. = Gl;’ and

g, = G, = 0. Then $e=00e%, §E= §v= s, and §P= {vidsa
= a( 4+ 52; = 0. Trouble could occur in gﬂ',';: cr in J¢ only through
{ p, so that 5 7 and 5’ g do not become infinite for e=0. Similarly,
trouble could cceur in Ep through the term -acosk 5e » which, however,
does not become infinite, or through the term aesink gE But
gE = {!, = O(e-l), 50 that this term also remains finite.

The quantity ¢ = sinI occurs in the denominators of 5' (Y gs, h3,

'é;, and h , and thus also in the dencuinators of $ g, $h, § M, and
L4

3
£ g,ﬁ . JAgain, however, the coordinstes remain finite when sinI = O.

To test this point, reject &ll terms except those containing ')751': cscl.
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Since G3 end G are of order 71, and Gl; and é“h of oxder ng, it

3 0
s = (' pd o -~
follows that 0 G is also of order 7, and 5'70 = (1-178, éG/(C’}O,'.,"'_Q)
rexains finite. Thus the term siny §m, in § 7n remains finite.

o
1

We also have g, = -h, = O('rfl) , B, =2 er p'lcmsg‘IcscIcosg,
3 3 0 3 e
o~ - -
by = -éerep lcosIcscIcosg, and §0 =g = 0(’»’,’0%- Thus the term

ﬂocoszj) 5 Y in { 7 also remains finite, so that 5 7 remains finite.
Finally, ¢ = §nrcosI fg = I(g5hg) + J3J;l(i3+g3cos1)=
3 21 er p lco=acscI(cos3I-cosI) = -3 3J‘;l erep'lsinlcosIcosg =

Thus §¢ remains finite. There is no trouble with §p .
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